
ANNUAL JOURNAL OF ELECTRONICS, 2009, ISSN 1313-1842

75

Study of OSEK OS Possibilities for Usage in
Railway Electronic Diagnostic Systems

Kristian Dilov Dilov and Emil Nikolov Dimitrov

Abstract – OSEK is an abbreviation for the German term

"Offene Systeme und deren Schnittstellen für die Elektronik
im Kraftfahrzeug" (English: Open Systems and the
Corresponding Interfaces for Automotive Electronics). It is a
static operating system for fault free embedded applications.
The aim is analysis of the OSEK specification, in order to
design suitable OS for railway diagnostic proposes.

Keywords – OSEK, OSRT, OS, kernel, scheduling, ISR.

I. INTRODUCTION

OSEK is a joint project of the automotive industry. It
aims at an industry standard for an open-ended architecture
for distributed control units in vehicles.
A real-time operating system, software interfaces and
functions for communication and network management
tasks are thus jointly specified.

A. OSEK/VDX overview

The OSEK operating system provides the necessary
services to support distributed faulttolerant

highly dependable real-time applications (e.g., start-up
of the system, message handling, state message interface,
interrupt processing, synchronisation and error handling).

The operating system is built according to the user's
configuration instructions at system generation time. The
operating system cannot be modified later at execution
time. That means it is static – its original form, in terms of
occupied resources is kept up for lifecycle of the product
without any modifications. The specified operating system
services constitute a basis to enable the integration of
software modules made by various manufacturers. To be
able to react to the specific features of the individual
control units as determined by their performance and the
requirements of a minimum consumption of resources, the
prime focus was not to achieve 100% compatibility
between the application modules, but their direct
portability.

The system service is the basic unit in OSEK. It is
involved in tasks’ states transition and execution. It is also
responsible for resource and events management and
interrupts handling. It is activated upon the following
events:
- system time tick expiration;

- explicit request for task scheduling;
- system event status change;
- interrupt category 2 occurrence;
The main characteristics are:
- The OSEK operating system is configured and scaled
statically. The user statically specifies the number of tasks,
resources, and services required.
- The specification of the OSEK operating system supports
implementations capable of running on ROM, i.e. the code
could be executed from Read-Only-Memory.
- The OSEK operating system supports portability of
application tasks.
- The specification of the OSEK operating system provides
a predictable and documented behavior to enable operating
system implementations, which meet automotive real time
requirements.
- The specification of the OSEK operating system allows
the implementation of predictable performance parameters.

Figure 1. OSEK – global view

Standardised interfaces
The interface between the application software and the

operating system is defined by system services. The
interface is identical for all implementations of the
operating system on various processor families.

System services are specified in an ISO/ANSI-C-like
syntax, however the implementation language of the
system services is not specified.

K. Dilov is with the Department of Electronics and Electronics
Technologies, Faculty of Electronic Engineering and
Technologies, Technical University - Sofia, 8 Kliment Ohridski
blvd., 1000 Sofia, Bulgaria, e-mail: kdilov@kdilov.com

E. Dimitrov is with the Department of Electronics and
Electronics Technologies, Faculty of Electronic Engineering and
Technologies, Technical University - Sofia, 8 Kliment Ohridski
blvd., 1000 Sofia, Bulgaria, e-mail: edim@tu-sofia.bg

ANNUAL JOURNAL OF ELECTRONICS, 2009

76

B. Architecture of the OSEK operating system

Processing levels

The OSEK operating system serves as a basis for
application programs which are independent of each other,
and provides their environment on a processor. The OSEK
operating system enables a controlled real-time execution
of several processes which appear to run in parallel.

The OSEK operating system provides a defined set of
interfaces for the user. These interfaces are used by entities
which are competing for the CPU. There are two types of
entities:
- Interrupt service routines managed by the operating
system.
- Tasks (basic tasks and extended tasks)

The hardware resources of a control unit can be managed
by operating system services. These operating system
services are called by a unique interface, either by the
application program or internally within the operating
system.

OSEK defines three processing levels:
- Interrupt level
- Logical level for scheduler
- Task level

Within the task level, tasks are scheduled according to
their user assigned priority. The run time context is
occupied at the beginning of execution time and is released
again once the task is finished. The following priority rules
have been established:
- Interrupts have precedence over tasks.
- The interrupt processing level consists of one or more
interrupt priority levels.
- Interrupt service routines have a statically assigned
interrupt priority level.
- For task priorities and resource ceiling-priorities bigger
numbers refer to higher.
priorities.
- The task’s priority is statically assigned by the user
- Assignment of interrupt service routines to interrupt
priority levels is dependent on implementation and
hardware architecture

P
rio

rit
y

Figure 2. Logical levels of processing in OSEK

Processing levels are defined for the handling of tasks
and interrupt routines as a range of consecutive values.

Mapping of operating system priorities to hardware
priorities is implementation specific.

Assignment of a priority to the scheduler is only a
logical concept which can be implemented without directly
using priorities.

C. Tasks and task management

Task

Complex control software can conveniently be
subdivided in parts executed according to their real-time
requirements. These parts can be implemented by the
means of tasks. A task provides the framework for the
execution of functions. The operating system provides
concurrent and asynchronous execution of tasks. The
scheduler organises the sequence of task execution.

The OSEK operating system provides a task switching
mechanism including a mechanism which is active when
no other system or application functionality is active. This
mechanism is called idle-mechanism. Two different task
concepts are provided by the OSEK operating system:
• basic tasks
• extended tasks

running

suspended

ready

preem
pt st

ar
t

terminate

activate

waiting

wait

release

Basic task

Extended Task

Figure 3. Tasks types and their states

Task states

A task has to change between several states, as the
processor can only execute one instruction of a task at any
time, while several tasks may be competing for the
processor at the same time. The OSEK operating system is
responsible for saving and restoring task context in
conjunction with task state transitions whenever necessary.
The OSEK operating system is responsible for saving and
restoring task context in conjunction with task state
transitions whenever necessary.
- running - in the running state, the CPU is assigned to the
task, so that its instructions can be executed. Only one task
can be in this state at any point in time, while all the other
states can be adopted simultaneously by several tasks.
- ready - all functional prerequisites for a transition into the
running state exist, and the task only waits for allocation of
the processor. The scheduler decides which ready task is
executed next.
- waiting - a task cannot continue execution because it has
to wait for at least one event.

- suspended - in the suspended state the task is passive
and can not be activated.

ANNUAL JOURNAL OF ELECTRONICS, 2009

77

TABLE 1. TASKS’ STATES TRANSITION

Transition Former
state

New
state

Description

activate suspended ready
A new task is set into
the ready state by a
system service.

start ready running
A ready task selected
by the scheduler is
executed

preempt running ready
The scheduler decides
to start another task.
The running task is put
into the ready state.

terminate running suspended

The running task
causes its transition
into the suspended
state by a system
service

wait running waiting
The executed task is
topped until event is
activated

release waiting ready
At least one event has
occurred which a task
has waited for.

Basic Tasks

Basic tasks only release the processor, if
- terminate;
- the OSEK operating system switches to a higher-priority
task;
- an interrupt occurs which causes the processor to switch
to an interrupt service routine (ISR).

Extended Tasks

Extended tasks are distinguished from basic tasks by
being allowed to use the operating system call WaitEvent,
which may result in a waiting state. The waiting state
allows the processor to be released and to be reassigned to
a lower-priority task without the need to terminate the
running extended task. In view of the operating system,
management of extended tasks is, in principal, more
complex than management of basic tasks and requires more
system resources.

Task’s descriptor

The task’s descriptor is used by the system service for
management of the tasks. It is a RAM structure, where the
characteristics of the tasks are kept during OSEK execution
– such like priority, state, task’s stack pointer, task
type(basic or extended).

D. System dispatching

Unlike conventional sequential programming, the
principle of multitasking allows the operating system to
execute various tasks concurrently. The entity deciding
which task has to be started and the triggering of all
necessary OSEK operating system internal activities is
called scheduler. The scheduler is activated whenever a
task switch is possible according to the implemented
scheduling policy.

Full preemptive scheduling

Full preemptive scheduling means that a task which is
presently running may be rescheduled at any instruction by

the occurrence of trigger conditions pre-set by the
operating system. Full preemptive scheduling will put the
running task into the ready state, as soon as a higher
priority task has got ready.

The task context is saved so that the preempted task can
be continued at the location where it was preempted. With
full preemptive scheduling the latency time is independent
of the run time of lower priority tasks. Certain restrictions
are related to the increased (RAM) memory space required
for saving the context, and the enhanced complexity of
features necessary for synchronization between tasks.

Figure 4. Extended task activation

As each task can theoretically be rescheduled at any
location, access to data which are used jointly with other
tasks has to be synchronized.

Summarized, rescheduling is performed in all of the
following cases:
- Successful termination of a task.
- Successful termination of a task with explicit activating of
a successor task.
- Activating a task at task level - message notification
mechanism, alarm expiration.
- Explicit wait call if a transition into the waiting state takes
place (extended tasks only).
- Release of resource at task level.

Non preemptive scheduling

The scheduling policy is described as non pre-emptive, if
task switching is only performed via one of a selection of
explicitly defined system services - explicit points of
rescheduling. Non pre-emptive scheduling imposes
particular constraints on the possible timing requirements
of tasks. Specifically the non pre-emptive section of a
running task with lower priority delays the start of a task
with higher priority up to the next point of rescheduling.

suspendedTask1
Priority 30

Task2
Priority 50 running

Activation of Task1, ready for
run, but not activated

because of the priority of
Task2

ready

Latency time for task T1

Task2 is NOT replaced by
Task1, because of non-

preemtive scheduling policy

Task2 is terminated explicitly

running

Task1 started, because of
Task2 termination

suspended

Figure 5. Cooperative tasks swithcing

E. Alarms

The OSEK operating system provides services to
activate tasks, set events or call an alarm callback routine

ANNUAL JOURNAL OF ELECTRONICS, 2009

78

when an alarm expires. An alarm-callback routine is a short
function provided by the application.

An alarm will expire when a predefined counter value is
reached. This counter value can be defined relative to the
actual counter value (relative alarm) or as an absolute value
(absolute alarm). For example, alarms may expire upon
receipt of a number of timer interrupts, when reaching a
specific angular position, or when receiving a message.
Alarms can be defined to be either single alarms or cyclic
alarms. In addition the OS provides services to cancel
alarms and to get the current state of an alarm. More than
one alarm can be attached to a counter. An alarm is
statically assigned at system generation time to:
- one counter;
- one task or one alarm-callback routine.

F. Events

The event mechanism
- is a means of synchronization;
- is only provided for extended tasks
- initiates state transitions of tasks to and from the waiting
state.

Events are objects managed by the operating system.
They are not independent objects, but assigned to extended
tasks. Each extended task has a definite number of events.
This task is called the owner of these events. An individual
event is identified by its owner and its name or mask.
When activating an extended task, these events are cleared
by the operating system. Events can be used to
communicate binary information to the extended task to
which they are assigned to. The meaning of events is
defined by the application, e.g. signal for a timer
expiration, the availability of a resource, the reception of a
message.

Events are the criteria for the transition of extended tasks
from the waiting state into the ready state. The operating
system provides services for setting, clearing and
interrogation of events and for waiting for events to occur.

G. Resource management

The resource management is used to co-ordinate
concurrent accesses of several tasks with different priorities
to shared resources, e.g. management entities (scheduler),
program sequences, memory or hardware areas.

The resource management can optionally be extended to
coordinate concurrent accesses of tasks and interrupt
service routines. Resource management ensures that:
- two tasks cannot occupy the same resource at the same
time;
- priority inversion can not occur;
- deadlocks do not occur by use of these resources;
- access to resources never results in a waiting state;

If the resource management is extended to the interrupt
level it assures in addition that two tasks or interrupt
routines cannot occupy the same resource at the same time.

The functionality of resource management is useful in
the following cases:
- pre-emptive tasks;

- cooperative tasks, if the user intends to have the
application code executed under other scheduling policies
too;
- resource sharing between tasks and interrupt service
routines;
- resource sharing between interrupt service routines;

H. Interrupt processing

The functions for processing an interrupt (Interrupt

Service Routine: ISR) are subdivided into two ISR
categories:
- ISR category 1 - The ISR does not use an operating
system service. After the ISR is finished, processing
continues exactly at the instruction, where the interrupt has
suspended the execution, i.e. the interrupt has no influence
on task management. ISRs of this category have the least
overhead. It is not allowed to call OS services from context
of this kind of interrupts.
- ISR category 2 - OSEK operating system provides an
ISR-frame to prepare a run-time environment for a
dedicated user routine. During system generation the user
routine is assigned to the interrupt. The meaning of this
time frame is that the OS activates a task with higher
priority, and preempts the currently executed task, with no
respect to the current scheduling policy.

II. CONCLUSION

OSEK provides the necessary possibilities for vehicle

control and diagnostic electronic systems development. It
allows distributing the application in the respective
environment organized by the OS, in terms of time,
synchronization, based on:
- sequenced utilization of the existing resources, distributed
in the vehicle, to enhance the performance of the overall
system without requiring additional hardware;
- precise scheduling of the tasks by alarms;
- possibilities to execute slow, time-consuming tasks
parallel to the fast time critical tasks;
- possibilities for fast reaction on event with different set of
interrupts handling options;
- possibilities for control and instrumentation of the tasks
execution time.

The static character of the system ensures fault free
system and robustness.

REFERENCES

[1] М. Луканчевски. Системно програмиране за едночипови
микрокомпютри
[2] OSEK/VDX - Operating System Specification 2.2.22
[3] J.K Stankovic, J. K. Ramamritham. The design of the Spring
kernel. Real time systems symposium San Jose 1987
[4] Shao B., R. Wang, EMBEDDED REAL-TIME SYSTEMS TO
BE APPLIED IN CONTROL SUBSYSTEMS FOR
ACCELERATORS - Tsinghua University, Beijing
[5] http://portal.osek-vdx.org/
[6] http://www.autosar.org/

